Structure-Activity Correlations for Antibacterial Agents on Gram-Positive and Gram-Negative Cells ${ }^{1}$

Depuriment of Chemistry, Pomon, Collegf, Clurcmunt, Collifernio

Received Decomber 1!, 1:60:

Abstract

 thiocyanates, diguandines, diamidines, phenvl metharylates, \mathcal{N}-alkyluikethamide chlorides, aryluitroakenes, ureas, benzyl alcohols, alkyl sulfates, α-bromo and α-hydroxy soaps, and quinine derivatives has beenc correlated with their chemical structure. It is shown by means of substituent constans and regression malysis that the lipophilic character of the molecule or substituent as expressed by $\log P$ or π is the most inportant factor in determining the activities of the componds examined. The ideal lipophilic character ($\log P_{0}$) for gram-negative cells has been found to be about 4, but that for gram-positive cells is about 6 . Where linear dependence on log $/$ ' or π is observed (less than supraoptimal lipophilic character was studied), the slope relating $\log \mathrm{BR}$ and $\log P$ or π is about 0.7 . Thi is very close to that found for the equation correliting the binding of phenols by bovine serum albumin. This work clearly shows the great advantage in using the octand-water referene systen for comparing the dependence of biological activity on hydrophobic character of wo k of differen inventigators using different sets of drugs in different biological systems.

In extending our use of a mathematical model for the correlation of chemical structure with biological activity,$^{2-5}$ we turn our attention in this report to autibacterial agents. Since the classic work of Meyer and Overton, considerable effort has been made to find linear relations between the nonspecific toxicity of organic compounds and their lipophilic character. Often oil-water partition coefficients have been used to define lipophilic character and $1 / C$ to define relative toxicity in a standard test. C is the molar concentration of the drug necessary to cause a standard biological response (BR). Equation 1 represents a way we have found convenient for formulating the relationship,

$$
\begin{equation*}
\log \mathrm{BR} \equiv \log (1 / C)=k \log P+k^{\prime} \tag{1}
\end{equation*}
$$

In ec $1, k$ and k^{\prime} are constants best evaluated by the method of least squares, and P represents the partition coefficient.

Although there have becu many scattered attempts to correlate structure and activity using partition coofficients, there las been no serious reported attempt outside of our laboratory to study many different sets. of drugs acting on different biological systenis using a single reference system. The biggest deterrent to such studies has been of course the large effort necessary to measure the many hundreds of partition coefficicuts. Our discovery of the additive character of $\log I^{\prime 6}$ makes it possible to calculate nany partition coofficients from rolatively few base values. This hats greatly expedited our work. We have used the 1 -octanol-water system as our standard reference. This then allows one to compare the lipophilic properties of different sets of congeners acting in different systens. for cxample, we have found that a large variety of inlibitors of oxidative netabolism in a variety of

[^0]different biological systems (bacteria, brain tissuc, tadpoles, nitochondrias, ctc.) all show the same relative dependence on I ' for their toxic action. For 15 different examples conforming to eq 1 , we found a range of slopes of only $0.80-1.3$ with a mean of 1.04 .
It has been our hypothesis that for the general case (where there is a very wide range of lipophilic chatacter in a set of congeners), one should not cxpect a linear relationship between $\log (1 / C)$ and $\log P$, but instend, one should look for a parabolic relationslip. This has led to the development of ef 2 . In eq $2 \rho \sigma$ are the
$$
\log (1 / C)=-k(\log P)^{2}+l^{\prime} \log P+\rho \sigma+k^{\prime \prime}(2)
$$

Hammett constants. ${ }^{8}$ In deriving eq 2 we assumed that, in general, in the testing of drugs one does not reach a truc equilibrium between drug in the exobiophase and drug at the sites of action. In other words, a molecule of drug has a certain anount of time during the test interval to find the sites of action via a randomwalk process. The course of the randon walk will be highly dependent on the lipophilic character of the drug. Consider the extrenes; if P is near zero, then the drug will be so water soluble it will not easily crose a lipophilie membrane and the dring will be localized in the first aqueous phase. As P approaches ∞, the drug becomes so tightly bound to lipophilic phases that it camot cross aqueous barrices. Somewhere betwecn $P=0$ and $P=\infty$ there will be an ideal value such that the drug having this partition coefficient will have: maximum freedom in the random-walk proces. Its probability of reaching the reaction site in the standard test interval will be greatest. We have fonnd, within the possible experimental range of P values, that organic compomeds ane bomud by bovine sermen albunin and bovine hemoglobin according to eq $1 .{ }^{9}$ We have also found that various body tissues bind burbiturates in much the same fashion.: This mons that the movement of very lipophilic compounds through biological tissue is severely restricted.

If the partial derivative of eq $2,0 \log (1, C) \partial \log P$. is taken and set equal to zero, we can solve for the constant we call log P_{0}. This gives the apex of the parabola defined by the first two ternes on the right

[^1]side of eq 2. This $\log P_{0}$ represents the ideal lipophilic character for a set of congeneric drugs. We have postulated ${ }^{3,9,10}$ that, steric and electronic factors remaining constant, different sets of congeneric drugs acting in the same way on the same receptor sites should have the same $\log P_{0}$ constants. Once $\log P_{0}$ is found for a given set of compounds, this becomes a useful constant for the design of completely new sets of congeners to act on the same centers. The purpose of this work was to take data from the studies of antibacterial agents and fit them to eq 2, and its simpler forms, in order to explore our thesis concerning $\log P_{0}$. From some preliminary results ${ }^{2}$ it was felt that $\log P_{0}$ would depend on the type of organism used in the test. Since considerable quantitative work has been carried out in the field of antibacterial agents using a variety of microorganisms, this seemed to be a good field in which to make a comparative study. We are of course quite interested in the differential susceptibility of gram-positive and gram-negative microorganisms to various agents. ${ }^{11}$

Methods

The biological data ${ }^{12-33}$ and physicochemical parameters are assembled in Table I. We have used two methods of expressing relative biological activity. One, using $\log (1 / C)$, is defined above. The other, using $P C^{\prime}$, refers to the phenol coefficient conver ted to a molar basis.

To derive the equations in the section on results, we have used the method of least squares and an IBMI $360 / 40$ computer. The values of σ were taken from the compilation of Jaffé. ${ }^{8}$

The $\log P$ values refer to the neutral molecules, ${ }^{2}$ Some of the values in Table I were obtained experimentally and others were calculated, taking advantage of the additive-constitutive nature of $\log P .{ }^{6}$ For
(10) C. Hansch, A. R. Steward, S. M. Anderson, and D. Bentley, J. Med. Chem. 11, 1 (1968).
(11) R. J. Dubos, Ann. Rev, Biochem., 11, 659 (1942).
(12) (a) E. Klarmann, L. W. Gates, and V. A. Shternov, J. Am. Chem. Soc., 54, 298 (1932); (b) ibid., 54, 1204 (1932).
(13) C. M. Sutter, Chem. Rew., 28, 269 (1941).
(14) E. Klarmann, V. A. Shternov, and L. W. Gates, J. Am. Chem. Soc., 85, 2576 (1933).
(15) E. Klarmann, L. W. Gates, V. A. Shternov, and P. H. Cox, Jr., ibid., 55, 4657 (1933).
(16) M. L. Khorana, S. Y. Pandit, and A. D. Pishawikar, J. Pharm. Sci., 56, 993 (1967).
(17) (a) F. W. Tilley and J. M. Schaffer, J. Bacteriol., 16, 279 (1928); (b) ibid., 12, 303 (1926),
(18) I. J. Kligler, J. Exp. Med., 27, 463 (1918).
(19) J. M. Schaffer and F. W. Tilley, J. Bacteriol., 14, 259 (1927).
(20) A. T. Fuller, Biochem. J., 36, 548 (1942).
(21) D. Vlachová and L. Drobnica, Collect. Czech. Chem. Commurı., 31, 997 (1966).
(22) R. Woodside, M. Zief, and G. Sumrell, Antibiot. Chemotherapy, 9. 470 (1959)
(23) A. F. McKay, L. D. Garmaise, R. Gaudry, H. A. Baker, G. Y. Paris, R. W'. Kay, G. E. Just, and R. Schwartz, J. Am. Chem. Soc., 81, 4328 (1959). (24) O. Schales and H. A, Graefe, ibid, 74, 4486 (1952).
(25) D. E. Burton, K. Clarke, and G. W. Gray, J. Chem. Soc., 1314 (1964).
(26) D. V. Carter, P. T. Charlton, A. H. Fenton, J. R. Housley, and B. Lessel, J. Pharm. Pharmacol., 10, suppl. 149T (1958).
(27) D. J. Beaver, D. P. Roman, and P. J. Stoffel, J. Am. Chem. Soc., 79. 1236 (1957).
(28) C. O. Wilson and O. Gisvold. "Textbook of Organic Medicinal and Plarmaceutical Chemistry," 4 th ed, J. B. Lippincott Co., Philadelphia, Pa., 1962: (a) p 15: (b) p 221.
(29) G. Wirgin, Z. Hyo. Infektionskrankh., 46, 149 (1904).
(30) P. B. Cowles, Yale J, Biol. Med., 11, 33 (1938).
(31) H. Braun and H. Schaeffer, Berlin. Klin. Wochschr., 54, 885 (1917). (32) (a) A. H. Eggerth, J. Exp. Med., 49, 53 (1929); (b) ibid., 50, 229 (1929).
(33) W. Ciusa and A. Buccell, Gazz, Chim. Ital., 95, 1455 (1965).
compounds used for eq 3 and $30,0.5$ was added for each CH_{2} unit to the experimental value of 1.34 found for 4-methoxyphenol. For a branch in a chain, 0.2 unit was subtracted. For example, 1.50 was used for n-propyl and 1.30 for isopropyl. The same procedure was followed for the molecules used in eq $4,5,31$, and 30. For 4-phenoxyphenol we subtracted 0.5 from 4methoxyphenol and added 2.13 for the phenyl moiety. For eq 6 and 29 , the value of 0.62 for the $\mathrm{CH}_{3} \mathrm{~S}$ group, was taken from the phenoxyacetic acid system ${ }^{62}$ and added to 1.46 for phenol to obtain 4-methylthiophenol. Hydrogen is defined as zero. The higher members of the series were then calculated by adding CH_{2} unit values. For eq 12, the experimental value for cyclohexanol is 1.23 . The methyl derivative values were obtained by adding 0.5 to 1.23 . The $\log P$ of diethylcarbinol was obtained by adding 0.5 to 0.61 , the experimental value for 2 -butanol. The figure for triethylcarbinol was obtained by adding 1.50 for three CH_{2} units to $\log P$ for t-butyl alcohol (0.37). The values used for benzyl alcohol and phenethyl alcohol are the experimentally found ones. For eq 13, 14, $37,38,47,49,52,54$, and 55 where the charged functional group makes it almost impossible to obtain accurate $\log P$ values in the octanol-water system, we have taken the functional group as an unknown constant and simply used 0.5 for each CH_{2} unit. This allows us to determine the dependence of biological activity on lipophilic character in terms of the slope but not the intercept. The $\log P$ values for the molecules used to find eq $9,10,19-21$, and 40 were based on the experimentally found values for n-butylamine (0.81), di- n-propylamine (1.73), triethylamine (1.44), aniline (0.90), N^{-}-methylaniline (1.66), N, N -dimethylaniline (2.31), and quinoline (2.03), Tetrahydroquinoline was calculated by adding 4×0.41 for the four cyclic CH_{2} units ${ }^{6 \mathrm{~b}}$ to 0.65 for pyridine. Log P for naphthylamine was found by adding 1.35 for the $(\mathrm{CH})_{4}$ moiety to 0.90 for aniline. The $\log P$ values for alcohols of eq 11,35 , and 36 were based on the value of -0.66 for methanol, 0.37 for t-butyl, and 0.89 for t-amyl alcohol. For the thiocyanates of eq $16, \log P$ for the phenyl derivative was measured. For the congeners in this set π values from the benzene system ${ }^{6 \mathrm{a}}$ were used except for 4 -I which was taken from the phenoxyacetic acid system. The phenoxy group was calculated by subtracting 0.5 from 2.11 for anisole. For the 2-naphthyl derivative, 1.35 was added for $(\mathrm{CH})_{4}$. For eq 17 and 46 we elected to hold the common functional group (NCS) constant and use π values for the rest of the molecules. Where a functional group is attached to an alkyl moiety, aliphatic values are used. ${ }^{6}$ bor example, to estimate π for the group $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{CN}) \mathrm{CH}_{2}$, we add -0.84 for aliphatic CN to 1.30 for isopropyl to obtain 0.46 . For those mixed aliphatic aromatic compounds, $4-\mathrm{NCC}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ serves as an example. To the value of 2.69 for toluene we add -0.57 for an aromatic CN to obtain 2.12. The other nembers were calculated in the same way. For the $2-\mathrm{Cl}$ function we used the value of 0.59 from the phenoxyacetic acid system.

For eq 18 and 45 we used π values from the phenoxyacetic acid system except for 4 -(Et $)_{2} \mathrm{~N}$ which was based on $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$ (0.18) from the benzene system. Log P values for ea $7,15,28$, and 48 were based on the ex-

Table I
Data Used in Derivahon of Equathons in Tables 11 and hll

Compr	1-ug f	1247^{1}	$\mathrm{E}_{1} 15$	E. 28	E148
$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{OH}$	2.39	0.75	0.81	0.7	0.78
4 - $\mathrm{Cl}-2-\mathrm{-} \mathrm{Me}$	2.s9	1.25	1.34	1.25	1.23
4-Cl-2-E6	3.39	1.65	1.73	1.7)	1.72
$4-\mathrm{Cl}-2 \sim n-\mathrm{Pr}_{1}$	3.89	2.20	2.26	2.23	2.1.)
$4-\mathrm{Cl}-2-n-\mathrm{Bu}$	4.39)	2.44	2.3	2.70	2.69
$4-\mathrm{Cl}-2-n-\mathrm{A}_{111}$	4.89	2	$\underline{2}$. 3,9	3.03	3.19
4-Cl-2-s-Am1	4.69	2.00	2.9	2.s-	$\cdots \mathrm{s}$
$4-\mathrm{Cl}-2-n-\mathrm{Hlex}$. 3 3	1.20	2.88	3.45	:3.48
$4-\mathrm{Cl}-2-\mathrm{c}$-Hex	4.90	...	2.25	2.9	$\because 11$
$4-\mathrm{Cl}-2-\mathrm{Hep}$	5. 89	\ldots	$\because .1$	8.3	3.3
$4-\mathrm{Cl}-2-n-\mathrm{Oct}$	(6.39)		1.s;	3. 6	...
$4-\mathrm{Cl}-2-\mathrm{s}-\mathrm{Oct}$	6.19			3.41	
$2-\mathrm{Cl}$	2.15,	10.3	0.\%)	0.60	0.43
2-Cl-4- Mc	2.6.)	11.95	0.91	1.06	0. 93
$2-\mathrm{Cl}-4-\mathrm{Et}$: 8.15	1.46	1.9.)	1.42	1.40
$2-\mathrm{Cl}-4-n-\mathrm{Pr}$	3.6 .7	1.8\%	1.85	1.7	1.80
$\cdots-\mathrm{Cl}-4-n-\mathrm{Bu}$	4.15	2.23	2.20	2.27	2.24
$2-\mathrm{Cl}-4-n-\mathrm{Aln}$	4.65	2.22	2.23	2.78	2.67
$2-\mathrm{Cl}-4-t-\mathrm{Am}$	4.3	1.83	2.00	2.42	2.47
2-Cl-4-n-Ilex	5.15	...	1.91	3.21	3.15
2-Cl-4-n-He1,	5.65		2.96	2.93;	2.68
4-Cl-3-Me	2.9.5	1.21	...	1.24	1.24
$4-\mathrm{Cl}-3.5-\mathrm{M} \mathrm{c}_{2}$	3.51	1.70	\ldots	1.63	1.60
4-Cl-6-El-3-\1e	8.95)	2.17	\ldots	1.96	2.00
4-Cl-6-n-Pr-3-\1e	4.45	2.42	\ldots	2.610	2.54
4-Cl-6-i-Pr-3-Mte	4.25	2.32	\ldots	2.45	2.43
4-Cl-2-E1-3,-5-Me ${ }_{2}$	4.51	1.96	\ldots	2.32	2.27
$4-\mathrm{Cl}-6-\mathrm{s}-\mathrm{Bu}-3-\mathrm{Me}$	4.75	1.96	\cdots	2.su	2.85
$4-\mathrm{Cl}-2-i-\mathrm{Pr}-3,5-\mathrm{Me}$?	4.81	2.24	\ldots	2.82	2.82
4-Cl-6-Et2 $\mathrm{Me}^{-3-\mathrm{Me}}$	5.25	1.78	\ldots	3.19)	3.10
4-Cl-6-i-Pr-2-Et-3-ME	5. 25	2.11		2.66	2.60
	-3,31	1.81	\ldots	$\because .11$:3.30
	5.81	. .	-	8.26	$\therefore .43$
4-Cl-2-Etane-3,5-35en	5.81	-		3.44	3.38
4-Cl-2-s-()et-3-3le	6.75		-		2.8
4-Cl-2-s-Oct-3, ${ }^{\text {a }}$ - Me_{2}	7.31	.	-.	2.46	...

Table I (Continued)

Table I (Continued)

$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COO}$
HI
$o-\mathrm{Cl}$
$p-\mathrm{Cl}$
$m,-\mathrm{Cl}$
$o, p-\mathrm{Cl}_{2}$
$2,4,6-\mathrm{Cl}_{3}$
$2,4,5-\mathrm{Cl}_{3}$
$2,4,5,6-\mathrm{Cl}_{4}$
Cl
Br_{5}
$\quad \mathrm{RNCS}$
R
$\mathrm{NCCH}_{2} \mathrm{CH}_{2}$
MeCHCNCH
2

	6.29	1.41
	Lory (I/C) olsd ${ }^{23}$	
$\Sigma \pi$	Eq 17	Eq 46
0.16	3.65	3.65
0.46	4.00	3.40
0.46	3.70	3.70
0.73	3.46	3.46
1.16	3.75	3.75
2.69	4.68	4.68
2.12	4.57	4.57
3.40	4.75	4.77
2.41	4.79	4.79
3.99	4.54	5.15
4.11	5.15	5.75
3.12	5. 04	5.34
3.28		4.7

Compd			$\begin{gathered} \text { Log }(1, C \\ \text { ohsd }^{20} \end{gathered}$
	Iog I	Σ \%	El 22
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.46	0.00	1.08
$2-\mathrm{F}$	1.71	0.06	1.11
$3-\mathrm{F}$	1.9\%	0.34	1.26
$2-\mathrm{Cl}$	2, 15)	0.23	1.2S
$\ddot{-M e O}$	1.58	0.12	1.34
2-MeO	1.58	-0.07	1.48
$2-\mathrm{I}$	2.6 .5	0.28	1.51
4-F'	1.7	0.06	1.53
B-1.	2.02	-0.07	1.60
4-Mc	1.94	-0.17	1.60
$2-\mathrm{Me}$	1.96	-0.14	1.70
3-Cl	2.50	0.37	1.70
$4-\mathrm{Cl}$	2.39	0.23	1.75
4-MeO	1.34	-0.27	1.79
$2,4-\mathrm{Br}_{\mathrm{l}_{2}}$	3.48	0.46	1.92
$: 3-\mathrm{Br}$.	2.63	0.39	1.90
$4-\mathrm{Br}$	2.59	0.23	1.98
3-I	2.93	0.35	2.23
4-I	2.91	1).2'	2.31
4-Cl-3-Me	2.95	0. 1.6	2.34
$2,4-\mathrm{I}_{2}$	4.10	0.56	2.42

$\mathrm{Eq}_{4} 24,25$	El 41	E! 51	Eq 36	Fq 57	E460
	2.89	2.89	2.80	2.89	2.89
3.08	3.08	3.08	3.08	3.08	3.08
	3.12	3.25	3.25	3.25	3.25
3.12	2.91	2.7	2.91	2.91	3.12
3.28	3.49	3.49	3.80	3.49	3.49
$\underline{2.96}$	3.76	3.76	3.76	3.76	3.24
3.09	3.84	3.84	3.84	3.84	8.54
3.21	4.97	3.97	4.67	4.45	3.3
	5. 19	4.71	5.00	i). 00	3.71
	5.32	3.64	5.32	3.85	3.64

$\underset{X}{\mathrm{Xl}^{\prime} \mathrm{hCH}_{4}=\mathrm{CMENO}_{4}}$	玉;	$\Sigma \sigma$	lege (1/C) obusd ${ }^{\text {a }}$	
			Lu 18	E4t5
H	0.00	0.00		1.30
$2-\mathrm{MeO}$	-0.33	-0.27	-0.63	1.15
$2-\mathrm{EtO}$	0.17	-0.25		1.40
$3-\mathrm{MeO}$	0.12	0.12	-0.25	1.52
$4-\mathrm{MeO}$	-0.04	-0.27	-0.28	1.22
$2.3-(\mathrm{MeO})_{2}$	-0.21	-0.15		1.40
$2-\mathrm{Cl}$	0.5) 9	0.23	-0.20	1.7)
$2,4-\mathrm{Cl}_{2}$	1.29	0.46	. .	2. 40
$3,4-\mathrm{Cl}_{2}$	1. 46	0.60	0.46	2.52
$2 \sim \mathrm{NO}_{2}$	-0.20	0.78	0.40	1.10
$4-\mathrm{NO}_{2}$	0.24	0.78	O.19)	1.70
$4-\mathrm{MeCONII}$	-0.70	-0.02	-0.40	0.89
$4-\mathrm{Et}$ -	1.15	-0.60	0	

${ }^{a}$ Estimated from values of other closely related congeners. ${ }^{b}$ From A. Albert and E. P. Serjeant, "Ionization Constants of Acids and Bases," John Wiley and Sons, Inc., New York, N. Y., 1962, p 144. "From E. A. Braude and F. C. Nachod, "Determination of Organie Stuctures by Physical Methods," Vol. 1, Academic Press Inc., New York, N. Y., 1955, p 596. a From G. Harris, "Dictionary of Organic Compounds," 4th ed, Oxford University Press, New York, N. Y., 1965 . "From M. Yoshioka, K. Hamamoto, and T. Kubota, Bull. Chem. Soc. Japan, 35, 1725 (1962). ${ }^{\prime}$ The $\log P$ value of the un-ionized base was used.
perimentally determined values for 4- and 2-chlorophenol. For the 4 -chloro-3-methyl congeners the valuc of 0.56 for the 3 -methyl group in phenol was employed. ${ }^{\text {ia }}$ Most of the values for eq 22 are experimental values. ${ }^{6 a}$ Log P values for eq 23 and 61 are based on experincontal values for benzyl alcohols where possible. ${ }^{6 a}$ Where not possible, the π value for the function in the phenoxyacetic acid system was added to $\log P$ for benzyl alcohol. For eq $27, \log P$ for the basic structure N-phenyl-N'-3.4-dichlorophenylurea (4.71) wat measured experimentally and $\log P$ values for its derivatives were obtained by adding π values from the phenoxyacetic acid system except for phenyl (2.13) and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, \mathrm{NH}_{2}$, and $\mathrm{SO}_{2} \mathrm{NH}_{2}$ obtained from the benzene system. for eq 34 we have added π coocms ($0 . \mathrm{H}^{2}$) to $\log P$ of placnol to get $\log P$ of 1.88 for methyl thydroxybenzoate. The value of 0.42 was calculated fronin ed 17 of linjita. Iwasa, and Hanseh. ${ }^{\text {aza }}$ I.og P^{P} values for the quinine derivatives of ea 47 were found by adding CH_{2} units to the value of 2.03 for dilhydroquininc. Log P for diliydroquinine was found by adding 0.3 (the difference betwed ethyl and vinyl) to 1.7:3 for cquininc.

In estimating $\log P$ for the phenyl methacrylate of eq $24,25,41,51,5(0,57$, and 60 we have used π of -0.64 for the $\mathrm{CH}_{3} \mathrm{COO}$ moicty. ${ }^{6}$ Subtracting 0.5 for the uncthyl group yields π of -1.14 for - COO - To this wo added 2.13 for benzene and 1.00 for $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$ to get 1.99. For maphthol derivatives of eq 26 and 42 we started with the value of 2. . 4 for β-maphthol.
la some of the equations we have used π instead of $\log P$. This constant is defined as: $\pi=\log P_{\lambda}-$ $\log I_{\text {II }} . I^{\prime}$ is the partition cocfficient of a derivative and P_{11} that of a parcut molecnle. For example, $\pi_{\text {c }} \|_{x}=\log I^{\prime}$ tolnene $-\log P$ benzenc. Thus π is the logenthen of the partition coefficient of a molecular part, wherew $\log P$ refers to the whole molecule. Since π is known to be additive in nature, we can explore the lipophilic role of substituents in a series of drugs without actually measuring any partition coefficients. Equations of the form of 1 will have the same slope whether we use π or $\log I^{\prime}$. They will differ only in intercept. When strong electron-withdrawing groups are placed on molecules with acidic protons, significant changes in ionization may result. In one way or another, these changes in ionization may affect the biological activity of the compound. Each set of data has been fit to eq 2 and then, by stepwise regression analysis, we have omitted first the $\rho \sigma$ term and then the $\left(\log P^{\rho}\right)^{2}$ term. Only those terms are included in the equations in Table II which are justified at >0.90 level of significance by an lost.

In soveral of the equations we have used $p K_{a}$ intstead of σ to account for electronic effects on activity, Since σ is defined as $\sigma=\log \left(K_{\mathrm{X}} / K_{\mathrm{H}}\right)$ where K_{H} is the ionization constant of benzoic acid and K_{X} that of a derivative, either $p K_{\mathrm{a}}$ or σ may be used as a measure of relative acidities of members of a set of congencrs.

For substituents in ortho positions we have used σ_{p}, assuming this to give a rough approximation of the dectronie offect. Fortumately, electronie effects :ure small for most of the compounds under consideration so that this is not a serions problem. If electronic fifects :uce large conough to make big changes in ioniza-
tion constants, then special corrections must be: made. ${ }^{34,33}$

The σ vahes of $t-n-\mathrm{Hex}-\mathrm{O}$ - and higher homologs are assmmed to be the same as the σ of $t-n$-Anlo 0 . The σ value of 4 -sec-Am-O- is obtained by addling -0.02 to the σ value of $4-n-\mathrm{Am}-\mathrm{O}-(-0.02-0.34=$ -0.36) since the difference between the σ values of $4-i-$ Pr-O- and 4-n-1'r-O- is - 0.02 . The same approxinattion is used for the σ value of $4-n-$ - $n n-\cdots$ and highem members. 'The σ values of the substituents of alkytchlorophenols and alkyl sulfates are practically constant ind can be neglected in the analysis.

Results

In Table II we have summarized the statistically most significant cquations correlating the structureactivity relationship in gram-negative bacteria. In these equations, n is the nmmber of data points used in the regression analysis, r is the correlation coefficient, and s is the standard deviation. The figures under log P_{0} define the 90% confidence interval on this constant.

The correlations with the 24 different systems in Table II are, on the whole, quite satisfying. Of the 24 , eleven have corrolation coefficients above 0.95 , uine have r between 0.95 and 0.53 , and three have very poor correlations. Twelve of the equations are linear in nature. We assume this is because in these invostigations an insufficient number of molecules with $\log T$ greater than 4 was studied and hence the apex of the parabola relating $\log P^{2} C^{\prime}$ or $\log (1 / C)$ and $\log P$ could not be defined with any degree of statistical assurance.

The most interesting result from the equations of Table II we the eight cases where $\log P_{0}$ could be established. These structures we summarized in Table III. The range for these cight values is $3.8-5.1$ with a mean of 4.t. Onitting the highest value (5.1), we find a range of only 3.8-4.6 with a nican of 4.3. Unfortunately, all of the examples but one where $\log P_{0}$ could be calculated were studies employing phenols. The one exception is that embodied in eq 16 for phenyl isothiocyanates. It is of special interest that for this set we find $\log P_{6}=4.10$, very close to the mean valne found for the pherols. This means that the ideal lipohydrophilic character required for maximmo toxicity is the same for phenols and phenyl isothiocyamates and that the sites of action must be the same.

For the equations in Table II showing a lincar d(:pendence on $\log P(\$-12,17-3)$, wo fint a rather limited range of slopes.

Omitting equations $9,11,12,17$, and 18 we fincl : range of slopes of $0.54-0.77$ for sevell sets of atcohols. amines, and phenols. The mem value is 0.6 . . Considering the wide variety of compounds inchdod :und the fact that the investigations were carried out in several different laboratories using different gramnegative bactoria as test organisms, the similarity in slopes of the seven equations is remarkable. Equattion 11 for alcohols has a slope of 1.02 which is considerably higher than the others. It was observed by the investigators ${ }^{19}$ that the bacteria used in testing there alcohols was unusually sensitive and, in fact, there was conviderable doubt as to its identity. The same problen of mertanty applits to eq 9 and 12.

[^2]Table II
Equations Describleq ithe Strucrure-Activity Relationship in Gram-Neghmive Bigereria

Drug vs, S. typhosa	Equation	n	r	s	Loy Γ_{0} or $\pi 0$	o.
Hydroquinone monoethers	$\log P C^{\prime}=-0.280(\log P)^{2}+2.199 \log P^{\prime}+1.219 \sigma-2.215$	11	0.972	(). 169	$\begin{gathered} 3.93 \\ (3.54-4.87)^{n} \end{gathered}$	3
IResorcinol monvethers	$\log P^{\prime} C^{\prime}=-0.180\left(\log P^{\prime}\right)^{2}+1.628 \log P-1.75$	11	0.97.)	0.208	$\begin{gathered} 4.52 \\ (3.84-6.63) \end{gathered}$	4
4-Alkylresorcinols	$\log P C^{\prime}=-0.204(\log P)^{2}+1.771 \log P-1.871$	10	0.982	0. 180	$\begin{gathered} 4.35 \\ (3.72-6.06) \end{gathered}$	5
p-Hydroxyphenyl alkyl sulfides	$\log P C^{\prime}=-0.407(\log P)^{2}+3.082 \log P+2.460 \sigma-3.649$	12	0.971	0.168	$\begin{gathered} 3.79 \\ (3.62-4.03) \end{gathered}$	6
Alkylchlorophenols	$\log P C^{\prime}=-0.334(\log P)^{2}+2.991 \log P-4.540$	26	0.936	0.190	$\begin{gathered} 4.48 \\ (4.33-4.70) \end{gathered}$	7
Alkylbromophenols	Log $P C^{\prime}=0.765 \log P-0.998$	8	0.954	0.259		8
Aliphatic amines ${ }^{\text {b }}$	$\log P C^{\prime}=0.375 \log P-0.151$	10	0.880	0.159		9
Arylamines	$\log (1 / C)=0.589 \log P+3.949$	15	0.940	0.137		10
Alcohols ${ }^{b}$ (prim-tert)	$\log P C^{\prime}=1.024 \log P-1.536$	15	0.996	0.090		11
Alcohols (cyclohexanols, etc.)	$\log P C^{\prime}=0.614 \log P-0.949$	8	0.826	0.142	\cdots	12
Diamidines	$\log (1 / C)=-0.115 \pi^{2}+2.001 \pi-4.127$	8	0.989	0.152	$\begin{gathered} 8.73 \\ (7.63-13.23) \end{gathered}$	13
Diguanidines	$\log (1 / C)=-0.081 \pi^{2}+1.483 \pi-1.578$	8	0.996	0.156	$\begin{gathered} 9.20 \\ (8.26-11.12) \end{gathered}$	14
Drug vs. E. dysenteriae						
Alkylchlorophenols	$\log P C^{\prime}=-0.219(\log P)^{2}+2.2 \overline{5} 1 \log P-3.396$	19	0.937	0.241	$\begin{gathered} \tilde{0} .14 \\ (4.86-5.64) \end{gathered}$	15
Drug vs. E. coli Phenyl isothiocyanates	$\log (1 / C)=-1.040(\log P)^{2}+8.531 \log P+0.774 \sigma-12.629$	9	0.967	0.138	$\begin{gathered} 4.10 \\ (4.01-4.22) \end{gathered}$	16
RNCS	$\log (1 / C)=0.367 \pi+3.582$	12	0.890	0.284		17
1-Aryl-2-nitropropenes	$\log (1 / C)=0.401 \pi-0.269$	9	0.825	0.212	\ldots	18
Arylamines Drug vs, B, aerogenes	$\log (1 / C)=0.694 \log P-0.158 \mathrm{p} K_{\mathrm{a}}+4.462$	15	1). 962	0.114	\ldots	19
Arylamines	$\log (1 / C)=0.662 \log P-0.136 \mathrm{p} K_{\mathrm{a}}+4.452$	15	0.948	0.130	\ldots	20
Drug vs. B. dysenteriae F.						
Arylamines Drug vs. Ps. aeruginosa	$\log (1 / C)=0.648 \log P-0.119 \mathrm{p} K_{\mathrm{a}}+4.504$	15	0.961	0.110	\cdots	21
Substituted phenols	$\log (1 / C)=0.684 \log P-0.921 \sigma+0.268$	21	0.847	$0.22{ }^{\prime}$	\cdots	22
Drug vs. P. vulgaris. ${ }^{c}$ E. coli, and Ps. pyocyanea						
Benzyl alcohols Drug vs, K. pneumoniae	$\log (1 / C)=0.0539 \log P+0.531 \sigma+4.001$	14	0.939	0.212	\ldots	23
Phenyl methacrylates	$\log (1 / C)=0.009 \log P+3.093$	6	0.068	0.124	,	24
Phenyl methacrylates	$\log (1 / C)=0.034(\log P)^{2}-0.286 \log P+0.113 \sigma+3.606$	6	0.190	0.173	\cdots	25
Drug vs. S. typhosa Alkyl- β-naphthols	$\log (1 / C)=-0.226(\log P)^{2}+2.088 \log P-1.126$	19	0.479	0.438	4.62	26

${ }^{a} 90 \%$ confidence interval. ${ }^{b}$ Identity of the organism was doubtful: see text, ${ }^{c}$ In this example three different microorganisms were used simultaneously.

Equations 17 and 18 have slopes of 0.37 and 0.40 , respectively. The different slope for the RNCS derivatives of eq 17 points to a different mode of action for these compounds. The low slope with the arylnitropropenes (eq 18) may reflect the fact that this set of congeners has $\log P$ values rather near $\log P_{0}$. We did not place this set on a $\log P$ basis since we did not have $\log P$ for the parent compound. Log P for the parent compound would be near 3. Different susceptibilities among different species to a group of congeners are clearly illustrated by the study of phenyl methacrylates. In this case no correlation with $\log P$ and σ could be made for the gram-negative bacteria Klebsiella pneumoniae (eq 24, 25). Inspection of the data in Table I shows almost no difference in susceptibility of this organisnı to compounds having greatly different $\log P$ and σ values. The unusual resistance of this organisnı to structural variations to which other bacteria respond

Table IV

Eqcations Describing the Strecture-Activity Relationship in Grim-Positive Bacteria

Drug ve. S. wurcus	Equation	n	r	$*$	Log P_{0} or π,	E. no. no. d
Sabstituted ureas	$\log (1 / C)=-0.335(\log P)^{2}+3.453 \log P+2.99 .5 \sigma-4.200$	12	0.899	0.770	5.15	27
					$(4.49-11.95)^{\text {a }}$	
Alkylchlorophenols	$\mathrm{L} .0 \mathrm{~g} P O^{\prime}=-0.167(\log P)^{2}+2.121 \log P-3.498$	3.5	0.961	0.236	6.36	28
					$(5.98-6.94)$	
p-Hydroxyphenyl alkyl sulfides	$\mathrm{Log} P^{\prime} C^{\prime}=-0.147\left(\log P^{\prime}\right)^{2}+1.733 \log P^{P}-2.211$	12	0.995	0.093	$\begin{gathered} 5.90 \\ (5.15-7.46) \end{gathered}$	29
Hydroquinone monoethers	$\log P C^{\prime}=0.823 \log P-1.020$	13	0.982	0.196	...	30
Resorcinol monoethers	$\log P C^{\prime}=0.871 \log P-1.164$	11	0.994	0.115		31
Alkylbromophenols	$\log P C^{\prime}=0.847 \log P-1.258$	13	0.991	0.126		32
4-Alkylresorcinols	$\log P C^{\prime}=0.912 \log P-1.108$	8	0.952	0.409		:3
Esters of p-hydroxybenzoic acid	$\log P C^{\prime}=-0.167(\log P)^{2}+1.784 \log P^{\prime}-2.201$	8	0.996	0.066	$\begin{gathered} 5.34 \\ (4.54-7.37) \end{gathered}$	34
Alcohols (prim-tert)	$\log (1 / C)=0.671 \log P+0.069$	9	0.964	0.112		35
Alcohols (prim-tert)	$\log P C^{\prime}=0.888 \log P-1.543$	10	0.988	0.089		36
Diamidines	$\left.\log (1 / C)=-0.165 \pi^{2}+2.500 \pi-4.681\right)$	8	0.997	0.073	$\begin{gathered} 7.60 \\ (7.30-8.0 .5) \end{gathered}$	37
Diguanidines	$\log (1 / C)=-0.112 \pi^{2}+1.736 \pi-1.363$	8	0.979	0.296	$\begin{gathered} 7.75 \\ (7.00-9.71) \end{gathered}$	38
Aliphatic amines	$\log (1 / C)=-0.264(\log P)^{2}+3.081 \log l^{\prime}-4.416$	-	0.991	0.131	$\begin{gathered} 5.84 \\ (5.63-6.10) \end{gathered}$	39
Aliphatic amines	$\log P C^{\prime}=0.834 \log P-1.574 \mathrm{p} K_{\mathrm{a}}+15.590$	6	0.944	0.229		40
Phenyl methacrylates	$\log (1 / C)=0.668 \log P+1.342$	10	0.966	0.262		41
Alkyl- β-naphthols	$\log (1 / C)=0.626 \log P+1.316$	22	0.898	0.347		42
N^{1}-Alkylnikethamide chlorides	$\log (1 / C)=-0.060 \pi^{2}+0.909 \pi+2.920$	20	0.961	0.291	$\begin{gathered} 7.63 \\ (7.06-8.33) \end{gathered}$	$4{ }^{3}$
β-Nitrostyrenes	$\log (1 / C)=0.489 \pi+0.570$	12	0.885	0. 167		44
1-Aryl-2-nitropropenes	$\log (1 / C)=0.746 \pi+1.384$	12	0.976	0.114		4.
RNCS	$\log (1 / C)=0.516 \pi+3.330$	13	0.947	0.258		46
$12 \mathrm{OSO}-\mathrm{Na}+$	$\log (1 / C)=0.694 \pi-1.365$	10	0.976	0.325		47
Drug vs. Strep. hemolyticus						
Alkylchlorophenols	Log $P^{\prime} C^{\prime}=-0.171(\log P)^{2}+2.146 \log P-3.576$	33	0.956	0.251	$\begin{gathered} 6.29 \\ (5.78-7.22) \end{gathered}$	48
Drug vs. Sirep, viridans						
Diguanidines	$\log (1 / C)=-0.068 \pi^{2}+1.387 \pi-0.848$	8	0.984	0.314	$\begin{gathered} 10.21 \\ (8.08-31.76) \end{gathered}$	49
Aliphatic amines	$\log (1 / C)=-0.247(\log P)^{2}+2.815 \log P-2.301$	5	0.994	0.094	$\begin{gathered} 5.69 \\ (5.54-5.87) \end{gathered}$	50
Drug us. Strep. faecalis						
Phenyl methacrylates	$\log (1 / C)=-0.125(\log P)^{2}+1.359 \log P+0.415$	10)	0.861	0.334	$\begin{gathered} 5.42 \\ (4.64-109.90) \end{gathered}$	31
Drug vs, D. pneumonias						
RCHOHCOO-K ${ }^{+}$	$\log (1 / C)=-0.194 \pi^{2}+2.903 \pi-6.990$	5)	0.990	0. 201	$\begin{gathered} 7.47 \\ (6.72-13.68) \end{gathered}$	22
$\mathrm{RCHBrCOO}-\mathrm{K}^{+}$	$\log (1 / C)=-0.199 \pi^{2}+2.672 \pi-4.264$	8	0.893	0.596	$\begin{gathered} 0.73 \\ (6.25-7.34) \end{gathered}$:\%
Drugis. B. diphtheriae						
Hydrocupreines ${ }^{\text {² }}$	$\log (1 / C)=-0.123\left(\log P^{P}\right)^{2}+1.431 \log P+1.161$	17	0.936	0.300	$\begin{gathered} 5.81 \\ (5.55-6.12) \end{gathered}$	it
$\begin{aligned} & \mathrm{RCHBrCOO}-\mathrm{K}^{+} \\ & \text {Drug } v s, B, \text { subtilis } \end{aligned}$	$\log (1 / C)=0.550 \pi+0.283$	6	0.961	0.330	...	\%
Phenyl methacrylates Drug vs. B. circus	$\log (1 / C)=0.617 \log P+1.530$	10	0.976	0,204	\ldots	:\%
Phenyl methacrylates Drug vs. Cl. oedematiens	$\log (1 / C)=0.400 \log P+2.144$	10	0.815	0.420	\cdots	57
Aliphatie amines	$\log (1 / C)=-0.159(\log P)^{2}+2.072 \log P-1.529$	5	0.981	0.185	$\begin{gathered} 0.50 \\ (5.94-8.87) \end{gathered}$	is
Drug cs. Cl. sporagenes						
Aliphatic amines	$\log (1 / C)=-0.189(\log P)^{2}+2.373 \log P-2.631$	j	0.985	0.164	$\begin{gathered} 6.27 \\ (5.87-7.22) \end{gathered}$	5)
Drug vs. Sarcina lutea						
Phenyl methacrylates	$\log (1 / C)=0.161 \log P+2.721$	10	0.849	0.148	\ldots	(i)
Drug vs. S. aureus ${ }^{c}$ S allu; and Strep. faecalis						
Benzyl aleohols a 90% confidence inte simulaneotsis.	$\log (1 . C)=0.599 \log P+0.421 \sigma+4.069$ ${ }^{\circ}$ The $\log P$ ' values of the free athatoids were used. © In this cal		0. 906 e differe	0.307 nt micr	organisms were	$\begin{gathered} {[61} \\ {[1=0 \times 1]} \end{gathered}$

in a predictable manner is most interesting and its protecting structural features merit careful study. The alkyl- β-naphthols also gave a very poor correlation with the gram-negative bacteria Salmonella typhosa (eq 26), although a typically good correlation for this set of drugs in gram-positive bacteria (Staphylococcus aureus) was found (eq 42). The poor correlation with gram-negative cells reflects their more complex structure. ${ }^{36}$

In Table IV we find that where it can be defined, $\log P_{0}$ for gram-positive bacteria is much higher than for gram-negative organisms. For elevelı examples, summarized in Table V, we find a range of 5.2-6.5 with a nean of 5.9 for a heterogeneous group of ureas, phenols, esters, amines, and quinine derivatives. Thus the ideal partition coefficient for antibacterial agents for gram-positive organisms is much higher than for gramnegative organisms.

Table V
Summary of Parent Structures and Log P_{0} Values for Gram-Positive Bacteria

The difference in $\log P_{0}$ for gram-positive and gramnegative bacteria (6 us. 4) indicates that micelle formation ${ }^{37}$ cannot account for the loss of biological activity in the upper part of a homologous series since, if it were the reason, the $\log P_{0}$ would depend upon the type of compound regardless of the organism and this is not the case.

[^3]For the 17 equations with linear dependence on log' P or π, with $r>0.90$, we find slopes of $0.52-0.91$ with a mean of 0.73 . This is not far from the mean of 0.65 found for the gram-negative bacteria. In fact, for comparative purposes, both values should probably be rounded off to 0.7 .

These findings indicate that the toxic action, when electronic effects can be separated or held constant, is due to the relative lipophilic character of the drugs. Since data are limited and since part of the work was reported in terms of $P C^{\prime}$ and part in terms of $1 / C$, we cannot make any useful comparisons of intrinsic activity of the different sets of congeners by comparing intercepts. We are only able to compare $\Delta \log \mathrm{BR}$ with $\Delta \log P$ or $\Delta \pi$.

The fact that most of the equations in Table IV are linear with respect to $\log P$ is explained by the high $\log P_{0}$ found for gram-positive bacteria. In none of the systems described by eq $30-33,35,36,40$, and 61 where $\log P$ was used were data points for $\log P$ as high as 6 available. We have not attempted to estimate $\log P$ for the ions used in eq $13,14,37,38,43$, $47,49,52,53$, and 55 ; therefore we used π values.

For eq 54 , the $\log P$ values are for the free base rather than the salt. The base strength of all of the amines in this series will be constant and so the percentage of free base present in each case will be the same. It seems most likely that it is the free base that is the active species in this example; however, insufficient data are at hand to be certain of this point. ${ }^{34}$

Discussion

Considering first the linear equations in Tables II and IV, it is instructive to compare the mean slope of 0.65 for gram-negative bacteria and the slope of 0.73 for gram-positive bacteria with the slope in eq 62. Equation 62 correlates the binding of phenols to bovine serum albumin. ${ }^{9}$ In eq $62, C$ stands for the molar
$\log (1 / C)=0.681 \log P+2.489$

$$
\begin{array}{lcc}
n & r & s \tag{62}\\
19 & 0.962 & 0.133
\end{array}
$$

concentration of phenol producing a $1: 1$ phenol-protein complex via equilibrium dialysis. The dependence of antibacterial action on lipophilic character very closely parallels the dependence of protein binding on lipophilic character. This of course explains why phenols and long-chain amines are inactive or much less active in the presence of serum, ${ }^{20,28}$

The relatively nonspecific nature of the toxic action indicated by the equations in Tables II and IV is apparent from the fact that a variety of different sets of phenols, alkyl- β-naphthols, phenyl methacrylates, amines, alkyl sulfates, and alcohols give good linear correlations between $\log \mathrm{BR}$ and $\log P$ with slopes near 0.7. It is interesting to compare this type of toxic action with that for a variety of compounds inhibiting oxidative metabolic processes. As nientioned above, for 15 different sets of drugs acting in different biochemical systenıs (whole aninıals, isolated tissue, bacteria, etc.) we found a linear relationship between $\log \mathrm{BR}$ and \log P; however, in these examples where inhibition of oxidative metabolism appeared to be the critical reaction, the mean slope was found to be 1 . Thus the
slope associated with $\log P$ can be used to characterize the biochemical process.

The lower $\log P_{0}$ of about 4 for gram-negative bacteria may be attributed to the higher lipid content of the cell wall (up to 2.5% dry weight) compared to that of the gram-positive species $(0-2.6 \%))^{38.39}$ There is some evidence in Escherichia coli of a lipoprotein nembrane on both sides of the cell wall, ${ }^{40}$ Recently it has been shown that when three species of grampositive microorganisms were grown under conditions in which their cellular lipid content was increased, a corresponding increase in their resistance to penicillins was produced. Cell-wall lipid depletion increased their sensitivity. ${ }^{41}$

Before a molecule can reach the cytoplasnic membrane or the interior of the cell, it must cross the cell wall. Here it will be nore or less tightly bound depending on the nature of the wall and its own chemical constitution. If the cell wall is rich in lipid, as in the case of gram-negative cells, the adsorption of highly lipophilic molecules would be very strong, As one increases the lipophilic character of a given function in the kind of activity considered above, biological response tends to follow in a linear fashion up to a point. This is the point where binding of the drugs by the first lipophilic material with which they come into contact is so strong that the random walk by which these drugs reach their sites of action becomes quite strongly time dependent. This departure from linearity is probably exaggerated by the popular method of characterizing biological activity in terms of $1 / C$ or $P C^{\prime}$. As one goes to lower and lower concentrations to obtain the equivalent biological response witl the more active, more lipophilic members, one reaches very low concentrations of the highly lipophilic drugs. Loss of a small anount of material to very lipophilic binding sites results in an increasingly large percentage loss of drug.

The gram-negative organisms have a protective layer of lipid which protects then from lipophilis compounds as well as very hydrophilic compounds. The evidence seems strong that the difference between the susceptibility of gram-negative compared to granpositive bacteria to the more hydrophobic anionic and cationic detergents, higher alkyl sulfates, anines. phenols, chloroforms, ethers, esters, penicillins, etc., ${ }^{42}$ is due to the lipid content of the cell wall.

The appearance of a σ or $\mathrm{p} K_{\mathrm{a}}$ term in 10 out of the 58 equations indicates that the electronic effect of the substituent does play a significant role. The positive coefficient with σ (except eq 22 where the correlation is not as good us others) indicates that electron withdrawal promotes activity. Part of this effect may simply be to make the molecules more lipophilic. ${ }^{6,2}$ Electron withdrawal also increases the hydrogen bonding power of acidic hydrogens as well as their degree of ionization. Not enough information is present to cuable us to sort out the primary role of the electronic eifect of substituents.

[^4]It is noteworthy that $3, \pi, 3^{\prime}, 4^{\prime}$-tetrachlorosalicylanilide (TCS), a substituted phenol with a calculated log P of greater than 6, localizes on the cytoplasmic membrane of bacteria and canses leakage ol cell contents inlibiting the accumulation of nutrichts from the medimm. ${ }^{43}$ It has also been reported that bacteriostasis results from the action of TCS either on tha energy-producing systems of the cell or on a mech:inism coupling this cnergy to encrgy-requiring processer: ${ }^{11}$ which is to be expected from our previons results.: Unfortunately, we do not have a value of $P C^{\prime}$ for T ($⺀$ so that we can make direct comparison of it with the other phenols. It seems likely that the mechanism of action would be the same.

There seems to be a basie difference in the mech:nism of action of aliphatic and aromatic isothiocyanates. The aromatic ones of en 16 yield result, comparable to the phenols, but the aliphatic compomels of ea 17 and 40 show a low dependence on lipophilic character, especially in eq 17 . Inspection of the 1% values for those derivatives not laving a benzene ring shows a small degree of variance in relative activity. Two possible reasons for the much lower dependence on $\log P$ are app:arent. It might be that the sites of action are located so that movement through lipophilie material to reach them is not necessary (c.y., in the cell wall), or it might be that the mechanism of action at the site is not influenced by the lipophilic portion of the drug. At present it is not possible to decide between the two.

Although the above equations with their attendant $\log P_{0}$ values emble us to pull together a massive anount of miscellaneous antibacterial structure-activity study so that a relatively colnerent view is possible, nore n miform work should permit more detated analysis. Since we have no idea what level of precision the varions research groups were striving for in collecting the data, we are not sure just how procisely the slopes associated with $\log P$ and the $\log P_{0}$ values can be defined. For example, it is tempting to think that very careful testing ander uniform conditions might indicate a single $\log P_{0}$ (or very narrow range) for Table $1 I I$ and another for Table V. On the other lanad, the difference in $\log P_{0}$ for cach of the sets in Tables III and V may be quite real and characteristic of certain colluhar structural features. The results so far obtained indicate that time spent in very careful testing conld pay off by revealing through regression analysis small but significant differences in the nechanisin of action which, when fully appreciated. could be more consciously exploited in drug design.

One must not conclude that all antibacterial agents will have a $\log P_{0}$ near 4 or 6 . The value of $\log P_{0}$ is quite dependent on the total test system as well as the molecular nechanism of action. The mechanism of action of the sulfonamide drugs is quite different from the molecules considered in this report and their $\log P_{0}$ values are also quite different. ${ }^{3 \overline{5}}$

For very long chanin aliphatic molecules there is some doubt about the strict additivity of 0.50 for each CH^{2} unit. Tntramolecular hydrophobic boudinget, coukd lower the value of 0.50 . How serions this problem is

[^5]is difficult to estimate since it would only be apparent in the correlations or in the determination of $\log P$ values. The rather good agreement between $\log P_{0}$ and π_{0} for both aliphatic and the more inflexible aromatic compounds does not reveal any discontinuity, From some preliminary work measuring partition coefficients, it would appear that at least for some systems π for each CH_{2} unit is constant up to at least 10 carbon atoms. Of course this holds only as long as no electronic or dipolar interactions promote intramolecular hydrophobic bonding. ${ }^{6 b}$ The extreme difficulty in measuring partition coefficients of apolar groups larger than this leaves some uncertainty about the very large aliphatic compounds in Table I. This presents 110 problem for the results with gram-negative bacteria shown in Table III. While there are several instances where folding could occur with long chains of the molecules on which the data of Table V are based, comparison of the $\log P_{0}$ for the rigid phenols with the flexible aliphatic amines does not reveal a significant difference in $\log P_{0}$. For the six more rigid structures we find a mean $\log P_{0}$ of 5.8 and, for the five flexible examples (including the quinine derivatives), we find a mean $\log P_{0}$ of 6.0 .

As mentioned above, it must be strictly borne in mind that the $\log P$ values we have used are for the neutral un-ionized form of the molecules. This poses
no problem for the compounds of Table III; however, for the molecules of Table V we are comparing quite basic amines, of which only a very small fraction would be in the neutral form under test conditions, with relatively un-onized phenols. The fact that we find the same $\log P_{0}$ for these amines as we do for the phenols and ureas would indicate that the un-ionized form is more suitable to consider in correlation studies. The partition coefficient of the ionized molecule would be greatly different fron that of the un-ionized form. Exactly why one finds very sinilar $\log P_{0}$ values for highly ionized and un-ionized molecules as well as rather rigid aromatic and flexible aliphatic compounds is not apparent and suggests an important area for further study,

In sunımary, one can say that octanol-water partition coefficients constitute a very useful reference system for comparative biochenical and pharmacological studies where hydrophobic bonding is involved. Log P_{0} also appears to be a useful constant for the study of the movement of organic compounds through biophases.

Acknowledgment.-C. Hansch wishes to express his gratitude to the Guggenheim Foundation for a supporting fellowship, and to Smith Kline and French for a research associateship for Susan Anderson.

Molecular Orbital Calculations of the Preferred Conformations of Histamine and a Theory on Its Dual Activity

Lemont B. Kier
Ballelle Memorial Instilule, Columbus Laboratories, Biochemistry Division, Columbus, Ohio

Received January 12, 1968

Abstract

Extended Hückel molecular orbital calculations on the histamine molecule reveal two conformations of nearly equal preference, on the basis on calculated minimum energy. Neither conformation involves intramolecular hydrogen bonding. Population analyses reveal the charge-density pattern of the imidazole ring. The dual activity of histamine is proposed to be a consequence of the existence of two preferred conformations in equilibrium. One of these conformations places the quaternary nitrogen and the ($\operatorname{tr}^{2} \operatorname{trtr} \pi$) nitrogen of histamine 4.55 A apart, which is quite comparable to the $4.8 \AA$ estimated for the internitrogen distance in the antihistaminic triprolidine. An assignment of each histamine conformation to one of two histamine effects is provisionally made on this basis. This explanation of dual activity is comparable with that offered for a similar situation found in previous calculations on acetylcholine, muscarine, and nicotine.

Histamine (I) is known to produce a series of wellcharacterized biological responses when it is released from storage cells by the influence of trauma or chemical agents. A number of other molecules are known to produce these responses, but histamine is the most

I

II

III
active compound known and remains the prototype of histaminic activity. It is evident that the histamine molecule must present near-optimal electronic features to its receptor. To date, several studies have been directed toward elucidating the features of the molecule that are necessary to elicit biological activity. Lee and Jones ${ }^{1}$ have suggested that an important structural feature is the fragment II, in which the ring is a small aromatic nucleus. Neimann and Hays ${ }^{2}$ have suggested that the univalent cation (the predominant form at body pH) will exist in a hydrogen-bonded form, III. These authors felt that the ability to form this hydrogen bond is a necessary condition for histaminic activity. Lee and Jones, ${ }^{1}$ however, observed that, although all of the active compounds they studied were

[^6]
[^0]: (1) This work was supported by Research Grant GM 0-492 from rm, National lnstitutes of Health.
 (2) (\therefore Mansch anfl T'. l'ujita, J. Am. (hem. Soc., 86, 1616 (1964).
 (3) C. Hansch, A. R. Steward, J. Iwasa, and E. W. Delutsch, Mol. H/wom(icol., 1, 205 (1965).
 (0) C. Hanseth and E. W. Deutsih, Biochim. Biophys. Acta, 126, 117 (19612).
 (5) C. Hansch and Fi. J. I,ien, Biochem. Pharmacol., in bress
 (1906): (b) C. Hansch and S. A1. Anderson, J. Org. Chem., 32, 2:883 (1007);

[^1]:

[^2]:

[^3]: (36) J. lracket and A. E. Mirsks, "The Cell," Vol. II, Academic Press Inc. New York, N. Y., 1960, p 121.
 (37) A. Albert, "Selective Toxicity," 3rd ed, Jolm Wiley and Sons, Inc., New York, N. Y., 1965, p 170.

[^4]: (38) I. G. Gumsahmand R. Y. Stanier, "The Bacteria," Vol. I, Academic Press Inc., New York, N. Y., 1960, 1 , liv 1 .
 (30) M. R. J. Salton, "The Bacterial Cetl Wail," Risevier l'rblishing Co., Amsterdam, 1964.
 (40) P. 1. Clarke and M. D. Lilly, Natyre, 195, 516 (1962).
 (41) W. B3. Hugo and R. J. Stretton, J. Ges, Microbiol., 42, 133 (196b).
 (42) J. W. Lartholomew and 1. Mittwer, Bacteriol. Rer. 16, 1 (1952).

[^5]: (4:3) (a) R. C. \&. Wrodrone and I. E. Wikinson, J. Gen. Microhiol., 44 ${ }_{1}$ 343 (1906); (b) R. (\%, S. Woselroffe und 13. E. Wilkinson, thid., 44, 353 1.1016).
 (14) W. A. Hamiltob, Biorticm. J., 103, 731 (1967).

[^6]: (1) H. M. Lee and R. G. Jones, J. Pharmacol. Exptl. Therap., 95, 71 (1949).
 (2) C, C. Niemann and J. T, Hays, J. Am. Chem. Soc., 64, 2288 (1942).

